高衍射效率凸面闪耀光栅的研制

刘全^{1,2,3}*,吴建宏^{1,2,3},郭培亮¹,陈新华^{1,2,3}

¹苏州大学光电科学与工程学院,苏州纳米科技协同创新中心,江苏 苏州 215006; ²苏州大学江苏省先进光学制造技术重点实验室,江苏 苏州 215006;

³苏州大学教育部现代光学技术重点实验室, 江苏 苏州 215006

摘要 基于严格耦合波分析,研究凸面闪耀光栅的衍射特性;采用全息光刻-离子束刻蚀法制作中心周期为 2.45 μm、曲率半径为51.64 mm、口径为17 mm的凸面闪耀光栅,闪耀角为6.4°,顶角为141°。结果表明,在整个可 见-近红外波段,所制作光栅的1级衍射效率大于40%,在闪耀波长处1级衍射效率大于75%。 关键词 光栅;凸面闪耀光栅;全息光刻;离子束刻蚀;衍射效率 中图分类号 O438.1;TN29 **文献标识码** A **doi**: 10.3788/CJL201946.0313001

Fabrication of Convex Blazed Grating with High Diffraction Efficiency

Liu Quan^{1,2,3*}, Wu Jianhong^{1,2,3}, Guo Peiliang¹, Chen Xinhua^{1,2,3}

¹School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China;

²Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University,

Suzhou, Jiangsu 215006, China;

³Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu 215006, China

Abstract The diffraction characteristics of the convex blazed grating are investigated by using rigorous coupledwave analysis. The convex blazed grating with a central period of 2.45 μ m, a curvature radius of 51.64 mm, and an aperture of 17 mm is fabricated by using holographic lithography-scanning ion beam etching method. The blazed angle is 6.4°, and the vertex angle is 141°. The results show that the first-order diffraction efficiency of the proposed grating is greater than 40% in the whole visible and near-infrared band, and the first-order diffraction efficiency at blaze wavelength is greater than 75%.

Key words gratings; convex blazed grating; holographic lithography; ion beam etching; diffraction efficiency OCIS codes 050.2770; 090.2890; 220.4000

1 引 言

高光谱遥感技术是新一代对地观测技术,其特 有的兼具成像和光谱探测的优点使其广泛应用于地 质调查、大气与环境遥感监测、精细农业、医用光谱 成像分析、军事目标侦查等军用与民用领域^[1-6]。按 照分光的不同机理,高光谱遥感成像光谱仪主要分 为色散式、滤波式、干涉式三大类。其中,色散式成 像光谱仪的技术成熟度高,广泛应用于航空、航天和 近地遥感平台;干涉式成像光谱仪具有视场大、光通 量大、实时性好等特点,在弱辐射探测方面具有明显 优势^[7-8]。

凸面光栅成像光谱仪具有高成像质量、无谱线 弯曲、无梯形畸变、光谱响应函数均匀一致等优点,

收稿日期: 2018-09-26; 修回日期: 2018-11-12; 录用日期: 2018-12-04

基金项目:高分辨率对地观测系统重大专项(GFZX04061502)、国家重点研发计划(2016YFB0500501)、国家自然科学基金(60907017)、上海市全固态激光器与应用技术重点实验室开放课题基金(2014ADL02)、江苏高校优势学科建设工程(YX40000212)

^{*} E-mail: liuquan@suda.edu.cn

能够获取具有高分辨率的光谱图像。为了使凸面光 栅成像光谱仪具有高性能,要求凸面光栅具有高衍 射效率。凸面光栅可以分为两类:一类是 Laminar 光栅,即矩形槽光栅,其制作相对简单,但是衍射效 率偏低,影响成像光谱仪的性能;另一类是闪耀光 栅,其制作难度大,优点是衍射效率高,可以保证成 像光谱仪的高性能。凸面闪耀光栅的制作方法主要 分为两种:一种是电子束直写法,其优点是能够在任 意凸面上实现任意空间频率的闪耀光栅槽形,但是受 限于制作成本、制作光栅的面积等;另一种是全息离 子束刻蚀法,通过全息光刻制作凸面闪耀光栅掩模, 再通过离子束倾斜刻蚀获得凸面闪耀光栅槽形,其优 点是在全息光刻时平衡系统像差,实现像差校正全息 凸面闪耀光栅的制作,同时该方法在实现较大面积光 栅制作时也具有特别的优势。目前,国际上能够采用 电子束直写法制作凸面闪耀光栅的只有美国喷气推 进实验室(JPL)^[9];能够采用全息离子束刻蚀法制作 凸面闪耀光栅的有德国 Zeiss 公司和美国 Headwall Photonics 公司,具体工艺细节一直没有公开。

本文针对高光谱遥感领域急需的凸面闪耀光栅 进行深入研究,对全息离子束刻蚀法进行优化,制作 具有高衍射效率的凸面闪耀光栅。

2 衍射效率分析

本实验中用于高光谱成像仪的凸面闪耀光栅的 中心周期为 2.45 µm,工作在可见-近红外波段0.4~ 0.9 µm(自然光),入射角为7°。采用严格耦合波理 论[10-11]分析衍射效率,通过分别模拟横电波(TE)和 横磁波(TM)的衍射效率,进而计算得到自然光的 衍射效率,其值为 TE 效率与 TM 效率的平均值。 对于理想闪耀光栅,其槽顶角 α 为 90°,如图 1 所示, 其中 Λ 为周期, β 为闪耀角, γ 为反闪耀角。不同槽 形结构的1级衍射光的衍射效率如图2所示。由图 2可知,当闪耀角为5.9°~7.1°时,在可见-近红外波 段内,1级衍射效率大于40%。其对闪耀角的控制 精度要求极高,容差需要控制在-0.6°~0.6°的范围 内。当闪耀角为 5.9°时, 衍射效率随着波长的增大 而减小,最大值(91%)位于0.5 μm附近,而当波长 达到 0.9 µm 时, 衍射效率约减小到 45%; 当闪耀角 为 6.5°时,可获得理想的衍射效率,整个波段内的衍 射效率均大于 50%,最大衍射效率接近 91%。当闪 耀角为 7.1° 时, $0.4 \mu m$ 处的衍射效率最低,约为 42%, 衍射效率最大值 90%位于0.6 μm附近,即随着闪耀角 的增大,衍射效率最大值的位置向大波长方向移动。 同时,对于 0.9 µm 以上的近红外窗口,在闪耀角为 6.5°~7.1°时,0.9 μm 处衍射效率值大于 50%,分析表 明,0.9~1.0 µm的近红外波段,1级衍射效率仍然可 以保证大于40%。

图 1 凸面闪耀光栅示意图 Fig. 1 Schematic of convex blazed grating

图 2 不同闪耀角时衍射效率与波长的关系。(a) $\beta = 5.9^{\circ}$; (b) $\beta = 6.5^{\circ}$; (c) $\beta = 7.1^{\circ}$ Fig. 2 Relationship between diffraction efficiency and wavelength with different blaze angles. (a) $\beta = 5.9^{\circ}$; (b) $\beta = 6.5^{\circ}$; (c) $\beta = 7.1^{\circ}$

图 3 所示为不同波长时闪耀角 β 对衍射效率的 影响。由图 3(a)可知,当闪耀角大于 7.2°时,1 级衍 射效率小于 40%。由图 3(b)可知,当闪耀角为 5.7°~7.1°时,1 级衍射效率大于 70%。由图 3(c)可 知,当闪耀角小于 5.6°时,1 级衍射效率小于 40%。 结合不同闪耀角时波长与衍射效率的关系可以发 现,当闪耀角为 5.9°~7.1°时,在可见-近红外波段 内,1 级衍射效率大于 40%。

3 凸面闪耀光栅制作

凸面闪耀光栅制作流程如图 4 所示。首先,将 一层厚度适当的光刻胶均匀涂布到凸面基底上;其 次,用氪离子激光(波长为 413.1 nm)进行全息曝 光、显影,形成光刻胶光栅掩模,通过调节曝光量和 显影时间,有效控制光刻胶光栅掩模的槽形;最后, 采用转动扫描刻蚀工艺^[12-13],利用光刻胶光栅对离 子束的遮挡效应,使基片的不同位置先后被刻蚀,形 成三角形结构的闪耀光栅。

图 4 凸面闪耀光栅制作工艺流程

Fig. 4 Fabrication process of convex blazed grating

本实验在凸面基片上制作全息光刻胶光栅掩模,图 5 所示为凸面闪耀光栅掩模的原子力显微镜 (AFM)测试结果。由图 5 可知,光刻胶光栅掩模的 高度约为 740 nm,占宽比约为 0.85。为了获得理想

图 5 凸面闪耀光栅掩模的 AFM 测试结果 Fig. 5 AFM test result of convex blazed grating mask

的像质,在全息记录中需要采用4m光路进行全息 光刻,这给光栅的制作带来了很大的挑战。

为了突破凸面几何形状的限制,采用转动扫描 刻蚀工艺。图 6 为扫描离子束刻蚀原理图。离子束 垂直入射,在凸面基片的外侧设置与其同心的球面 挡板。该球面挡板中心的法线方向与离子束入射方 向之间的夹角为θ,转动中心为凸面基片的球心。 使凸面基片相对于入射离子束和球面挡板转动,利 用凸面基片上的光刻胶光栅掩模进行扫描刻蚀,以 保证凸面上的刻蚀均匀性。

图 6 扫描离子束刻蚀原理图

Fig. 6 Schematic of scanning ion beam etching principle

通过实验优化了刻蚀角度 θ,采用图 5 所示的 光刻胶光栅掩模完成了闪耀角为 6.4°的凸面闪耀光 栅的制作,AFM 测试结果如图 7 所示。由图 7 可

图 7 凸面闪耀光栅的 AFM 测试结果 Fig. 7 AFM test result of convex blazed grating

知,反闪耀角约为 32.6°,相应的顶角为 141°。

4 测量与分析

凸面闪耀光栅衍射效率的测量系统主要由光 源、前置光学系统、色散系统、探测器等组成,整个测 量系统的光路结构如图8所示。光源发出的光束首 先经过由准直透镜组、小孔、滤光片、分束镜和抛物 面镜等组成的前置光学系统,透镜1将光束会聚在 其焦平面上,经过小孔滤波后,该光束被透镜2准直 为平行光束;孔径光阑用于控制光束口径;滤光片将 复色光转变为单色光;分束器将光束分为两路,一路 经过抛物面镜会聚到光电二极管,以监测光源稳定 性,另一路为测量光路,光束经过抛物面镜以适当的 孔径角耦合到后面的色散系统中,以保证入射光束充 满整个凸面闪耀光栅。色散系统选用 Offner 型同心 结构,还原了待测凸面闪耀光栅的实际工作条件。

Fig. 8 Optical path structure of measurement system of diffraction efficiency

选用 Thorlabs 公司生产的 6 个滤光片进行测试,中心波长分别为 0.41,0.50,0.60,0.70,0.80, 0.89 µm,测量结果如表 1 所示。图 9(a)所示为所制作的凸面闪耀光栅衍射效率的理论值根据图 7 分析所得。由表 1 和图 9(a)可知,在可见-近红外波段,1 级衍射效率大于 40%,在闪耀波长处,1 级衍射效率大于 75%。

通过比较凸面闪耀光栅衍射效率的理论值和实验值可知,实验结果与理论值仅存在少量不一致。 上述偏差的成因主要包括所制作的凸面闪耀光栅的 槽形顶角比较圆滑,以及反闪耀边上部出现不同程 度的弯曲等。图 9(b)所示为顶角为 90°的理想槽形 的衍射效率与波长的关系。可以发现,实际槽形的 顶角偏离 90°,造成衍射效率的峰值明显减小,而对 整个波段的两端影响较小。

表 1 衍射效率的测量结果

图 9 凸面闪耀光栅的衍射效率与波长的关系。(a)实际槽形;(b)理想槽形

Fig. 9 Relationship between diffraction efficiency of convex blazed grating and wavelength. (a) Achieved blazed grating; (b) ideal blazed grating

5 结 论

通过分析凸面闪耀光栅的衍射特性,考察了实际光栅槽形对衍射效率的影响。结果表明,实际槽形的顶角大于90°,导致衍射效率的峰值明显减小, 但对整个波段的两端影响较小。为了获得理想的像质,采用4 m 光路进行全息光刻,制作了高质量的 凸面光刻胶光栅掩模。采用球面遮挡板结合转动扫 描刻蚀工艺,解决了刻蚀凸球面时槽形闪耀角不一 致的难题,制作出闪耀角为 6.4°、顶角为 141°的凸面 闪耀光栅,保证了凸面上光栅槽形的一致性。经表 面镀银,利用凸面闪耀光栅衍射效率测量系统,选用 Offner 型同心结构作为色散系统,还原了待测凸面 闪耀光栅的实际工作条件,并测量了其衍射效率。 在可见-近红外波段,所制作光栅的 1 级衍射效率大 于 40%,并成功应用于高光谱成像仪。

参考文献

- Gat N. Imaging spectroscopy using tunable filters: a review[J]. Proceedings of SPIE, 2000, 4056: 50-65.
- Pearlman J S, Barry P S, Segal C C, et al. Hyperion, a space-based imaging spectrometer [J].
 IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1160-1173.
- [3] He C, Feng Z K, Yuan J J, et al. Advances in the research on hyperspectral remote sensing in biodiversity and conservation [J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1628-1632.
 何诚,冯仲科,袁进军,等.高光谱遥感技术在生物 多样性保护中的应用研究进展[J].光谱学与光谱分析, 2012, 32(6): 1628-1632.
- [4] Ma Y P, Zhang W, Liu D X. Characteristics of hyperspectral reconnaissance and threat to ground military targets [J]. Aerospace Shanghai, 2012, 29 (1): 37-40, 59.
 麻永平,张炜,刘东旭.高光谱侦察技术特点及其对 地面军事目标威胁分析[J].上海航天, 2012, 29 (1): 37-40, 59.
- [5] Liu L X, Li M Z, Zhao Z G, et al. Recent advances of hyperspectral imaging application in biomedicine [J]. Chinese Journal of Lasers, 2018, 45 (2): 0207017.

刘立新,李梦珠,赵志刚,等.高光谱成像技术在生物医学中的应用进展[J].中国激光,2018,45(2):0207017.

- [6] Zeng S, Kuang R Y, Chen Y B. Hyperspectral characteristic band selection and spectral classification of five typical vegetation in Poyang Lake[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123002.
 曾帅,况润元,陈彦兵.鄱阳湖 5 种典型植被高光谱特征波段选择与光谱分类识别[J].激光与光电子学进展, 2017, 54(12): 123002.
- Mouroulis P. Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration [J]. Optical Engineering, 2000, 39 (3): 808-816.
- [8] Wang Y M, Lang J W, Wang J Y. Status and prospect of space-borne hyperspectral imaging technology[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010008.
 王跃明,郎均慰,王建宇. 航天高光谱成像技术研究 现状及展望[J]. 激光与光电子学进展, 2013, 50 (1): 010008.
- [9] Mouroulis P, Wilson D W, Maker P D, et al. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37 (31): 7200-7208.
- [10] Liu Q, Wu J H. Analysis and comparison of the scalar diffraction theory and coupled-wave theory about grating [J]. Laser Journal, 2004, 25(2): 31-34.
 刘全, 吴建宏. 光栅的标量衍射理论与耦合波理论的
- 分析比较[J]. 激光杂志, 2004, 25(2): 31-34. [11] Moharam M G, Gaylord T K, Grann E B, *et al*. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings [J]. Journal of the Optical Society of America A,
- [12] Liu Q, Wang H B, Sun P, et al. Fabrication of the convex blazed grating [J]. Proceedings of SPIE, 2010, 7848: 78480V.

1995, 12(5): 1068-1076.

[13] Wang H B, Liu Q, Wu J H. Fabrication of convex blazed grating by Ar⁺ ion-beam etching [J]. Acta Optica Sinica, 2011, 31(4): 0405002.
汪海宾, 刘全, 吴建宏. Ar⁺离子束刻蚀制作凸面闪 耀光栅[J].光学学报, 2011, 31(4): 0405002.